Relationes

Walsh's Rules for AH4 Systems Derived from United Atom Molecular Orbitals

ANTONY F. SATURNO

Department of Chemistry, State University of New York at Albany, Albany, New York t2203

Received April 28, 1967

Recently BINGEL $[I]$ has calculated, using a united atom approximation, the united atom molecular orbital energies of $AH₂$ and $AH₃$ systems as a function of nuclear position. The results agree quahtatively with the predictions of WALSH [2] concerning these systems.

The purpose of this paper is the extension of the analysis of BINGEL to AH_4 type systems. Specifically we will assess the changes in orbital energy as the nuclear geometry undergoes the transformation from a tetrahedral (T_d) configuration to the square planar (D_{4h}) configuration.

We shall first briefly outline the derivation of the pertinent formulas, their detailed derivation having been given by BINGEL. It is assumed that an effective one-electron Hamiltonian of the form $h = h_u + V$ can be written where the perturbation term V is given by

$$
V = \sum_{\alpha} Z_{\alpha} \left(\frac{1}{\mid \mathbf{r} \mid} - \frac{1}{\mid \mathbf{r} - \mathbf{R}_{\alpha} \mid} \right). \quad (1)
$$

Fig. I displays the various distances and the coordinate system used.

Fig. I. Coordinate system and distances in the UA expansion (after BINGEL)

It is further assumed that a set of zero-order united atom functions ψ exist which are eigenfunctions of h_u , i.e., $h_u\psi_i = \varepsilon_i\psi_i$. Furthermore, we shall restrict ourselves to considerations of s and p type orbitals only. The evaluation of the elements of the perturbation matrix V proceeds as follows: we write

$$
V_{ij} = \int \psi_i^* \ V \psi_j dv = \int \varrho^{ij} \ (\boldsymbol{r}) \ V(\boldsymbol{r}) \ dv \qquad (2a)
$$

$$
V_{ij} = \sum_{\alpha} Z_{\alpha} \int \varrho^{ij}(\mathbf{r}) \left(\frac{1}{\mid \mathbf{r} \mid} - \frac{1}{\mid \mathbf{r} - \mathbf{R}_{\alpha} \mid} \right) dv . \qquad (2b)
$$

The transition density ρ^{ij} and $(|r - R_a|)^{-1}$ are expanded about the origin of the united atom (defined by $\sum_{\alpha} Z_{\alpha} \mathbf{R}_{\alpha} = 0$) as follows:

$$
\varrho^{j}(\boldsymbol{r})=\sum_{L=0}^{\infty}\sum_{M=-L}^{+L}\frac{2L+1}{4\pi}\frac{(L-\mid M\mid)!}{(L+\mid M\mid)!}\ P_{L}^{|M|}\left(\cos\,\theta\right)\ e^{-iM\varphi}\,r^L\,\varrho_{LM}^{ij}(r)\qquad \qquad (3a)
$$

$$
|\mathbf{r}-\mathbf{R}_{\alpha}|^{-1}=\sum_{K=0}^{\infty}\sum_{N=-K}^{+K}\frac{r_{\leq}^{K}}{r_{\geq}^{K+1}}\frac{(K-|N|)!}{(K+|N|)!}\ P_{K}^{|N|}(\cos\theta)\ P_{K}^{|N|}(\cos\theta_{\alpha})\ e^{iN(\varphi-\varphi_{\alpha})}. \quad (3b)
$$

Where $r_{\langle \tau \rangle}$ is the lesser (greater) or r and R_{α} . Integration using (3a), (3b) gives the result

$$
\int e^{ij}(\mathbf{r}) \frac{1}{|\mathbf{r} - \mathbf{R}_{\alpha}|} dv = \sum_{L} \sum_{M} \frac{(L - |M|)!}{(L + |M|)!} P_{L}^{|M|}(\cos \theta_{\alpha}) e^{-iM\varphi_{\alpha}} \times \\ \times \left\{ R_{\alpha}^{L} \int_{0}^{\infty} r \varrho_{LM}^{ij} d\mathbf{r} - \int_{0}^{R_{\alpha}} \varrho_{LM}^{ij} [r R_{\alpha}^{L} - r^{2L+2} R_{\alpha}^{-(L+1)}] dr \right\}.
$$
 (4a)

Substitution of $\rho_{LM}^{ij}(r) \approx \rho_{LM}^{ij}(0)$ and $tR_{\alpha} = r$ into the second integral on the right hand side and subsequent integration over t gives

$$
\int \varrho^{ij}(\mathbf{r}) \frac{1}{|\mathbf{r} - \mathbf{R}|} dt = \sum_{L} \sum_{M} \frac{(L - |M|)!}{(L + |M|)!} P_L^{|M|}(\cos \theta_{\alpha}) e^{-iM\varphi_{\alpha}} \times \\ \times \left\{ R_{\alpha}^L Q_{LM}^{ij} - R_{\alpha}^{L+2} \varrho_{LM}^{ij}(0) \frac{2L + 1}{2(2L + 3)} \right\} \tag{4b}
$$

where Q_{LM}^{ij} is the multipole coefficient $\int rQ_{LM}^{ij}(r) dr$. $\bf{0}$

Furthermore the requirement of inversion symmetry restricts L to even integers only. Retaining terms up to and including $L = 2$ we have

$$
V_{ij} = \frac{1}{6} \varrho_{00}^{ij}(0) \cdot T - \sum_{M=-2}^{+2} \frac{(2 - |M|)!}{(2 + |M|)!} Q_{2M}^{ij} \cdot T_M \tag{5}
$$

where

$$
T = \sum_{\alpha} Z_{\alpha} R_{\alpha}^{2}; T_{M} = \sum_{\alpha} Z_{\alpha} R_{\alpha}^{2} P_{2}^{|M|}(\cos \theta_{a}) e^{-iM\varphi_{\alpha}}.
$$

For the case where

$$
\varrho^{ij} = R_{n_i l_i} R_{n_j l_j} Y_{l, m_i}^* Y_{l_j m_j} = \sum_{L} \sum_{M} \frac{2L + 1}{4\pi} \frac{(L - |M|)!}{(L + |M|)!} P_{L}^{|M|}(\cos \theta) e^{-iM\varphi} r^L \varrho_{LM}^{ij}(r) \tag{6}
$$

the multipole coefficient Q_{LM}^{ij} becomes

$$
Q_{LM}^{ij} = \left[\frac{(L - |M|)!}{(L + |M|)!} \right]^{-1/2} \delta(M, m_i - m_j) (-1)^{m_i} C^L(l_i m_i; l_j m_j) \cdot S \cdot \int_{0}^{\infty} r^{-(L+1)} R_{n_i l_i} R_{n_j l_j} dr \tag{7}
$$

where the sign factor $S = (-1)^{l/2} (|m_i| + |m_j - m_i|)$ and the C^L are the Condon-Shortley angular coefficients.

Having restricted ourselves to s and p orbitals only there are no off-diagonal elements of V between the s orbital and three p orbitals and thus

$$
E(2S) = \varepsilon_{2S} + \frac{1}{6} \varrho_{2S}(0) \cdot T \tag{8}
$$

Fig. 2. Coordinate system, choices of axes, and UA position for AH_4 molecules $(\phi_1 = \pi/4; \phi_2 = 3\pi/4; \phi_3 = 5\pi/4; \phi_4 = 7\pi/4)$

For the p orbitals the perturbation matrix becomes, using Eqs. $(5, 7)$

$$
\begin{array}{cccc}\nm_i/m_j & 1 & -1 & 0 \\
1 & \sqrt{\frac{T_0}{2T_1^*}} & -\frac{1}{2}T_2 & -\frac{1}{2}T_1 \\
-1 & \sqrt{\frac{1}{2}T_1^*} & T_0 & -\frac{1}{2}T_1^* \\
0 & -\frac{1}{2}T_1^* & -\frac{1}{2}T_1 & -\frac{2T_0}{2}\n\end{array}\n\right) \times \frac{1}{5} \langle r^{-3} \rangle
$$
\n(9a)

where

$$
\langle r^{-3} \rangle = \int_{0}^{\infty} \frac{R_{np}^2}{r^3} r^2 dr . \tag{9b}
$$

The geometrical arrangement of the five atoms in AH_4 and the UA position are indicated in Fig. 2. (All A-H bond lengths are assumed equal.)

Here

$$
T = 4R2
$$

\n
$$
T_0 = 4R2P_2(\cos \theta) = T \cdot P_2^0(\cos \theta) = \frac{T}{2} (3 \cos^2 \theta - 1)
$$
 (10)
\n
$$
T_1 = T_2 = 0
$$

and the V matrix is completely diagonal giving the energies

$$
E(2p_1) = E(2p_{-1}) = \varepsilon_{2p} + T_0 \cdot \frac{1}{5} \langle r^{-3} \rangle \tag{11a}
$$

$$
E(2p_0) = \varepsilon_{2p} - 2T_0 \cdot \frac{1}{5} \langle r^{-3} \rangle \tag{11b}
$$

For the tetrahedral arrangement $\theta = \frac{1}{2}$ (109°28′) and cos $\theta = 1/\sqrt{3}$ and $T_0 = 0$. Hence $E(2p_0) = E(2p_1) = E(2p_{-1}) = \varepsilon_{2p}$. For the square planar arrangement

Fig. 3. Correlation diagram for AH_4 molecules. The right ordinate has an absolute scale, the left one a relative scale. Note that there is a break in the ordinates between the s and p orbitals

$$
\theta = \pi/2
$$
 and $\cos \theta = 0$ and $T_0 = -\frac{1}{2}T$. Hence

$$
E(2p_0) = \varepsilon_{2p} + \frac{4}{5} R^2 \langle r^{-3} \rangle \tag{12a}
$$

$$
E(2p_1) = E(2p_{-1}) = \varepsilon_{2p} - \frac{2}{5} R^2 \langle r^{-3} \rangle. \tag{12b}
$$

Thus with Eqs. (10, 11a, 11b) we can draw a correlation diagram for AH_4 molecules, which is shown in Fig. 3. From the diagram we conclude that AH_4 systems with between 3 and 7 valence electrons should be planar, for example CH_4^+ (7) valence electrons). Furthermore, the first excited state of such systems should be non planar (except for the case of 6 valence electrons).

References

- 1. BINGEL, W. A.: An explanation of Walsh's rules using united atom molecular orbitals, "Molecular orbitals in chemistry, physics, biology", p. 191. Ed. by LÖWDIN, P. O., and B. PULLMAN. New York: Academic Press, Inc. 1964.
- 2. WALSH, A. D.: J. chem. Soc. 1953, 2260ff.

Prof. A. F. SATURNO Department of Chemistry State University of New York at Albany Albany, New York 12203, USA